Team Tron RL

Andranik Saakyan Arya Kashani
saakyana@uci.edu akashanlQuci.edu

Abstract

We are interested in exploring the emergence and evolution of cooperative behavior
(trapping, sacrificing, communicating, etc) by playing Tron with teams. We are
also interested in observing how the behavior of the agents changes as a response to
changes in the environment (e.g. imposing constraints on communication, adding
obstacles, etc).

In this project we train teams using three reward systems and have them compete
with each other to determine which reward system and policy result in the highest
cooperation and/or win ratio.

1 Introduction

Our project is in the exciting realm of multi-agent reinforcement learning. Applications of multi-
agent reinforcement learning include large-scale fleet management, swarm systems, and traffic light
control [1]. While Q-learning with Deep Q-Networks has resulted in strong performance in single
agent settings, the introduction of multiple agents complicates the learning process and brings forth
novel challenges such as non-stationarity and partial observability [1]. The non-stationarity of the
environment in multi-agent settings means the agents’ policies are dependent on each other and must
be constantly updated. The fact that the environment is dynamic violates the Markov assumptions
required for the convergence of Q-learning algorithms such as DQN [2]. Partial observability of
the environment further complicates the learning process, but we have left this challenge for future
research and provide the full grid as input to each agent. Many strategies have been proposed to tackle
these problems (LOLA, RIAL, Q-MIX), however training multi-agent policies using single-agent RL
algorithms can yield surprisingly strong results [2].

This is the approach we are using. We have created a new Tron teams environment that supports
having multiple players and teams. An agent dies if it collides with a wall or another agent, and the
winner of each game is the team of the last remaining agent. Each team trains a single policy with it’s
strategy depending on it’s reward system. In our experiments, after 1000 epochs the balanced team
beat the socialist team in almost 70% of the games, the balanced team beat the favored agent team in
about 80% of games, and the favored agent team beat the socialist team in about 85% of games.

2 Background

Our project extends the Tron environment in the ColosseumRL platform. We use RLIib and Tensor-
flow for training our teams. We chose the Deep Q-Learning algorithm with the following architecture
for our DQN:

i sample batches yne

Replay Buffer |«— Local
Trainer Rollout
[coamar|~|_ o

DQN architecture

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

The Convolutional Neural Network has 3 filters: (64, 5, 2), (128, 3, 2), (256, 3, 2) where the tuple
values represent output channels, kernel size, and stride, respectively. The network has 128 hidden
nodes and 3 nodes in the output layer which represent the approximated Q-values associated with
each action in the action space.

3 Problem Statement

The Tron teams environment is a fully-observable 13x13 grid with 4 players and 2 teams. Agents are
individually rewarded 1 point for every move they are alive, 1 negative point for death, and a reward
of 10 points for winning. To encourage cooperation and intelligent team behavior, we have created
three reward systems: balanced, favored agent, and socialist. The reward system for each team is as
follows:

Balanced

reward[playerl] = reward[playerl] + 0.5 - reward[player2]
reward[player2] = reward[player2] + 0.5 - reward[player1]
Favored Agent

reward[playerl] = reward[player1] + 0.25 - reward[player2]
reward[player2] = reward[player2] + 0.75 - reward[player1]
Socialist

reward[playerl] = reward[playerl] + reward[player2]
reward[player2] = reward[player2] + reward[player]]

Regarding the favored agent, we were interested to see if this reward system would incentivize the
lower-weighted player to sacrifice itself in situations where doing so would lead to its teammate
winning the game, receiving 10 points, and thus increasing its own reward.

We divided our project into three milestones. In milestone 1 we focused on understanding the
fundamentals of reinforcement learning/RLIib and implementing a working version of single player
Tron. In milestone 2, we created the Tron teams environment and trained teams using a DQN. Finally,
in milestone 3, we planned on experimenting with various reward systems and hyperparameters in
order to observe cooperative team behavior.

4 Method

Our initial approaches were not very successful. We started the project using tabular Q-learning due
to its simplicity; however, its simplicity was one of the reasons it was unsuccessful. We implemented
a Q table for storing state-action pairs and chose an action based on the epsilon-greedy policy, but
our agent had poor performance. Tabular Q-learning quickly becomes infeasible for complex action
and state spaces. Therefore, we decided to create a sequential neural network using the keras library.
The inputs to the network were: x and y coordinates of the agent, direction, distance to the edge of
the board in each direction, and whether there is a player in adjacent blocks. This approach was also
unsuccessful as our network did not perform well.

At this point, we returned to RLIlib and created a DQN with a buffer size of 10,000, exploration
fraction of 0.9, and training batch size of 256. Our preprocessor extracts the board and simplifies it
for the network by marking the location of all heads and walls, and rotates the board to make it look
the same from each player’s point of view. We then train a policy for each team, where each team
employs one of the reward systems described in the previous section.

5 Experiments

We ran multiple experiments tweaking the values of epsilon, learning rate, and other hyperparameters
shown in the figure. The experiments were ran on a machine with an 17 processor and 16gb of RAM.
Due to a lack of computational power, configuration (b) was very slow and did not result in much

config = DEFAULT_CONFIG.copy()

config['num_workers'] = 4
config["timesteps_per_iteration"] = 1024
config['target_network_update_freq'] = 2048

config = DEFAULT_CONFIG.copy()

config['num_workers'] = 4
config["timesteps_per_iteration"] = 128
config['target_network_update_freq'] = 256

config['buffer_size'] = 10_000 config['buffer_size'] = 50_000
config['schedule max_timesteps'] = 100_000 config['schedule_max_timesteps'] = 200_000
config['exploration_fraction'] = 0.9 config['exploration_fraction'] = 0.9
config['compress_observations'] = False config['compress_observations'] = False
config['num_envs_per_worker'] = 1 config['num_envs_per_worker'] = 1
config['train_batch_size'] = 256 config['train_batch_size'] = 4096
config['n_step'] = 2 config['n_step'] = 2

(@) (b)

Figure 1: Testing sets of DQN hyperparameters

improvement. However, after modifying parameters such as training batch size and timesteps per
iteration, training speed and performance improved significantly. For our final project, we used
configuration (a) with an initial epsilon of 1.0, final epsilon of 0.2 (annealed over 10,000 timesteps),
and learning rate = 0.0005. We also experimented with different reward systems and policies, such
as intelligent team vs untrained team and different combinations of games using our three reward
systems.

6 Results

We ran 25 games every 100 epochs and plotted win ratio for each team. The balanced team was most
successful, beating the socialist team in about 70% of games and the favored team in about 80%. The
favored team also beat the socialist team in about 85% of games. The learning curve is plotted next
to each matchup, however it is important to note that the difference between average reward between
the teams is not meaningful since each team has a different reward system. For example, we would
expect the average reward of the socialist team to be higher regardless of its actual performance due
to the way the reward is computed.

Although we achieved some interesting results, we noticed the training method is an area of improve-
ment for future research. Given enough epochs, the average reward converges; however, the initial
randomness due to exploration often changes the winner, making it hard to compare teams simply
based on reward systems. In future research, we would like to experiment with new training methods
to tackle the non-stationarity problem and to make the Tron environment more complex. One idea
is to make the environment partially-observable, train a policy for each agent, and give agents the
additional action of being able to communicate with their teammate if they are within a certain
distance of one another. We believe these constraints would make the emergence of cooperative
behavior more natural and interesting to study.

7 Team Members

)
L

' Andranik Saakyan Arya Kashani

Project idea, brainstorming, coding, Brainstorming, coding, experimentation,
experimenation, writing. data analysis, creating plots.

80
70
. - (’
5= g
064 ~ o
® @ 40
[3 [
= 0.4 4 < 30
20
02
10
. , , , , , S S
0 2 4 6 8 10 Epochs
Epochs
(a) Win Ratio per 100 epochs (b) Average Reward per 10 epochs
Figure 2: Balanced (blue) vs Socialist (orange)
a5
0.8
40 B
07
35
06 =
® Z 301
05 &
= & 25
04 @
2 20
03
15
0.2
i 10 1
0 2 4 6 8 10 T T T T T T
Epochs 0 0 4 &0 80 100
Epochs
(a) Win Ratio per 100 epochs (b) Average Reward per 10 epochs
Figure 3: Balanced (blue) vs Favored (orange)
80
0s 70
08 e
07 §
0.6 g'
H]
04
03
02
o1 : 0 2 2) 80 100
0 2 4 6 8 10 Epochs
Epochs
(a) Win Ratio per 100 epochs (b) Average Reward per 10 epochs
Figure 4: Favored (blue) vs Socialist (orange)
References

[1] Nguyen, T.T., Nguyen, N.D., & Nahavandi, S. (2018). Deep Reinforcement Learning for Multi-Agent
Systems: A Review of Challenges, Solutions and Applications. ArXiv, abs/1812.11794.

[2] Seita, D. (n.d.). Scaling Multi-Agent Reinforcement Learning. Retrieved from https://bair.berkeley!
edu/blog/2018/12/12/r11ib/

https://bair.berkeley.edu/blog/2018/12/12/rllib/
https://bair.berkeley.edu/blog/2018/12/12/rllib/

	Introduction
	Background
	Problem Statement
	Method
	Experiments
	Results
	Team Members

