
Introduction to Quantum Machine Learning and
Quantum Neural Networks

Andranik Sahakyan
Department of Computer Science

Johns Hopkins University
Baltimore, MD 21218
asaakya2@jhu.edu

Abstract

Quantum machine learning is a promising area of research that explores the use of
quantum algorithms to find patterns in classical data. Given that linear algebra is
at the essence of most machine learning algorithms and there exist exponentially
faster quantum analogs for computing the fast Fourier transform (FFT), finding
eigenvalues and eigenvectors, and performing matrix inversion, machine learning
seems like a natural application for exploiting quantum properties such as superpo-
sition, entanglement, and quantum parallelism for solving classically intractable
problems. In this paper, we provide an introduction to quantum machine learning
(QML) and quantum neural networks (QNN), and discuss a few proposed models,
challenges, and applications of QNN.

1 Overview of Classical Machine Learning

Machine learning is a subfield of artificial intelligence that involves building models capable of
learning from data without being explicitly programmed to do so. Machine learning algorithms are
divided into three main categories: supervised learning, unsupervised learning, and reinforcement
learning. In supervised learning, the learner is given a set of input-output pairs (x, y) representing the
feature vector and its associated labels, respectively. A supervised learning model assumes there is
some true relationship between the input x and the output y, and the goal is to learn a parameterized
function ŷ = f(x; θ) that maps the input to the expected output. In unsupervised learning, the learner
is given a set of unlabelled inputs and its task is to discover underlying patterns in the data. Perhaps
the most popular unsupervised learning task is clustering, in which the learner assigns each data point
to a cluster based on some similarity metric. In reinforcement learning, the learner, referred to as an
agent, is given neither an input vector nor a set of labels. Rather, the agent receives feedback in the
form of rewards by interacting with its environment. The goal of the agent is to learn a policy that
maximizes its expected reward. This paper will focus on supervised learning.

The simplest type of model is the linear model ŷ = θx + b. However, many complex real-world
relationships are nonlinear in nature. Thus, we can make our linear model more expressive by adding
a source of nonlinearity in the form of some activation function. This is the premise behind the
McCullough-Pitts perceptron, which is a simplified model of a biological neuron, giving the equation
ŷ = σ(θx+ b).[13] Extending this idea further, we can create arbitrarily many layers of neurons and
inject nonlinearities in between the layers, leading to the feedforward artificial neural network (ANN)
or multilayer perceptron (MLP) model. For example, a feedforward ANN with one hidden layer can
be written as ŷ = σ2(θ2σ1(θ1x+ b1) + b2).

According to the Universal Approximation Theorem, a neural network with a single hidden layer can
approximate any continuous function within a finite range. Since most classes of problems can be
reduced to functions, artificial neural networks are extremely powerful models that can be applied



to problems in any field of study. We will revisit the expressive power of neural networks when we
discuss their quantum analogs.

2 Introduction to Quantum Machine Learning

Quantum machine learning is the use of quantum algorithms within machine learning programs. This
field, which is still at its infancy, is trying to explore any potential benefits or advantages from making
some part of the machine learning model quantum. This can be accomplished in a few different
ways, summarized in Figure 1. The quantum component can either be the data processing device, the
data generating system, or both. In the first quadrant we have classical data analyzed by a classical
computer – this refers to all of classical machine learning. We can also use classical machine learning
to analyze quantum data, such as the results of some quantum mechanical experiment. Another
approach is to analyze quantum data on a quantum computer. However, the term quantum machine
learning usually refers to the case of analyzing classical data on a quantum computer. There are
also hybrid approaches that involve both classical and quantum processing, where computationally
expensive subroutines are outsourced to the quantum computer.[5,8,18]

Figure 1: Different approaches of combining quantum computing and machine learning.

3 Why is QML Interesting?

Although the term quantum machine learning immediately sounds like a buzzword, there is actually
some intuition as to why applying quantum algorithms to machine learning may yield promising
results. The mathematics of quantum mechanics is all about linear algebra on very high-dimensional
vector spaces. At its core, many machine learning algorithms also reduce to performing linear algebra
on high-dimensional vectors. Some of these common linear algebra problems include computing the
fast Fourier transform (FFT), finding eigenvalues and eigenvectors, and performing matrix inversion.
Table 1 summarizes the time complexity of the classical and quantum versions of these algorithms.
There is an important caveat regarding the exponential speed-up of the quantum algorithms which we
discuss in the Future Directions section.

Table 1: Time Complexity Comparison of Classical and Quantum Linear Algebra Algorithms

Algorithm Classical Quantum

FFT O(dlogd) O((logd)2)
Finding eigenvalues/eigenvectors O(d3)* O((logd)2)
Matrix inversion O(dlogd) O((logd)3)

*O(sd2) for low-rank/sparse matrices

2



An exponential speed-up has immense real-world implications for what can be considered computa-
tionally feasible. For example, consider an FFT computation on a 1 terabyte dataset. The classical
algorithm requires on the order of 1012 × log(1012) ≈ 3.99× 1013 operations, while the quantum
algorithm only requires ((log(1012))2) ≈ 1600 operations. A computation requiring 40 qubits and a
few thousand operations is feasible with the type of small-scale quantum computers we expect to
see in the near future. Additionally, due to the exponentially compact representation of the data, a
computation at this scale would not require the type of quantum error correction we would need to
factor large integers using Shor’s algorithm.

4 Introduction to Quantum Neural Networks

Quantum models can be categorized into deterministic and variational models. Deterministic models
refer to quantum circuits that produce deterministic values – that is, we can be certain what the
outcome of the measurement will be. Variational models are stochastic and parameterized, so instead
of directly measuring the result, we must repeat the experiment multiple times to gather statistics
about the expected measurement outcome. Quantum neural networks are a type of variational model
in which the goal is to optimize the weights of the neurons to measure the expected class label with
high probability. In this section, we take a deeper look at the various components of QNNs: state
preparation, model architecture, training methods, learning rate and runtime, and unique challenges
affecting QNNs.

Figure 2: Top – deterministic model, Bottom – variational model

4.1 State Preparation and Input Encoding

Before we can take advantage of quantum algorithms, our classical data must be transformed to
be represented as quantum states. This initial encoding step poses a much larger challenge than
expected, with state preparation taking exponential time in the worst case. This is important because
many quantum algorithms, including the algorithms mentioned in the previous section, assume
that data can be loaded in linear or logarithmic time.[22] Both the data and the encoding method
influence the runtime of state preparation.[19] Some of the challenges of the loading process include
quantum decoherence, error-prone quantum gates, and quantum-mechanical restrictions such as the
no-cloning theorem.1 Existing quantum computers are limited in both the quantity and quality of
qubits – the qubits are only stable for a short period of time. Barring the invention of a quantum
random access memory (qRAM), this means we need to reduce the number of operations involved in
state preparation to achieve faster loading times. The classic time-space trade-off of computer science
applies in the quantum world as well, with different encoding strategies trading off the number of
required qubits for the runtime complexity of state preparation.

4.1.1 Basis Encoding

For quantum algorithms that need to manipulate real numbers, a simple strategy is to approximate
the real number with a bit string and translate it bit-wise to the corresponding basis state in the

1The no-cloning theorem states that it is impossible to create an identical and independent copy of an arbitrary
unknown quantum state[23]

3



computational basis {|0⟩ , |1⟩}. For example, if we represent the real number 2 with the bit string 10,
then its basis encoding will be |10⟩. Thus, basis encoding requires n qubits for an n bit number. To
implement this encoding, each qubit in the initial state |0⟩ must be flipped to |1⟩, which can be done
in linear time.[22]

4.1.2 Angle Encoding

Another encoding strategy that requires a linear number of qubits is angle encoding. For this encoding,
we create n qubits for an n-dimensional input vector. Then, we apply Hadamard gates to all n qubits,
creating an equally weighted superposition of 2n states. To encode the data, we apply rotation gates
to each qubit, where the angle of rotation of the i-th qubit is equal to the value of the i-th component
of the input vector. Both basis encoding and angle encoding are efficient in runtime complexity but
inefficient in the number of required qubits.

Figure 3: Example of angle encoding

4.1.3 Amplitude Encoding

Amplitude encoding is a clever encoding strategy that encodes the input vector into the amplitudes
of the wave function. Every quantum system is described by its wavefunction ψ, and the square
modulus of the amplitudes represent the measurement probabilities for each outcome. Therefore, the
data values of the input vector must first be normalized to unit length. To associate each amplitude to
a component in the input vector, the dimension of the input vector must be a power of two because
the vector space of an n qubit register has dimension 2n. If this is not the case, we can pad the
input vector with zeros to increase the dimension.[22] Note that this does not change the result
since an amplitude of zero means the probability of observing that outcome is zero. A normalized
classical N -dimensional vector x is represented by the amplitudes of an n-qubit quantum state ψx as
ψx =

∑N
i xi |i⟩, where N = 2n, xi is the i-th element of x, and |i⟩ is the i-th computational basis

state.[16]

Figure 4: Visualization of amplitude encoding

For example, suppose we wanted to encode x = [1.0, 0.0,−3.2]T using amplitude encoding. Notice
that the dimension of x is not a power of two, so we will increase its dimension to the nearest power
of two by padding it with an additional zero. Then, we normalize the values of x so the square
modulus of the encoded amplitudes form a probability distribution of the measurement outcomes of
|ψx⟩: xnorm = 1√

11.24
[1.0, 0.0,−3.2, 0.0]T =⇒ 1√

11.24
(|00⟩ − 3.2 |10⟩).

4



Amplitude encoding is very qubit-efficient, only requiring ⌈log(NM)⌉ qubits to encode a dataset of
M inputs with N features each. This is because n qubits can represent 2n data values. A huge factor
in the quantum speed-up is due to this exponential compression in the representation of the classical
data. The states of quantum mechanical systems are vectors in very high-dimensional vector spaces,
and with a very small number of qubits we are able to represent data residing in an exponentially
high vector space. However, amplitude encoding state preparation routines for arbitrary data vectors
require an exponential number of operations. Although there are special cases for which we have
faster routines, such as sparse data vectors, the theoretical lower-bound of the depth of an arbitrary
state preparation circuit is known to be 1

n2
n, with current approaches taking about 2n operations.[17]

Amplitude encoding is required for many QML algorithms, including the HHL algorithm for solving
systems of linear equations.[9] Further research into efficient state preparation routines is therefore a
critical area of research for realizing the promised quantum speed-up of QML algorithms.

4.1.4 qRAM Encoding

A classical random access memory (RAM) is a memory device that takes an index and loads the data
value stored in that address into an output register. A quantum random access memory (qRAM) is
similar, except the address and output registers are quantum registers. This means that the registers
can be in a superposition of multiple values. Figure 5 demonstrates the use of a qRAM to load the
data value of the first two quantum registers into an empty output register. Note that the index is in a
superposition of the first two addresses ( 1√

2
|00⟩+ 1√

2
|01⟩) and the result in the output register is in

a superposition of the addresses with their corresponding data values: 1√
2
|00⟩ |000⟩+ 1√

2
|01⟩ |110⟩.

qRAM encoding uses basis encoding for the data values, which we have already seen requires a
linear number of qubits, and ⌈log(n)⌉ qubits to represent 2n addresses. This results in an encoding
with very desirable properties – namely, since the encoded data values may be in superposition, we
can take advantage of quantum parallelism to operate on all values in the superposition in a single
timestep. Additionally, because we use basis encoding for the data values, we can perform arithmetic
operations on our data. Currently, we do not have any physical implementation of a qRAM, so the
same caveat regarding quantum speed-up applies in this case as well.[21]

Figure 5: Example of qRAM encoding

4.2 QNN Model Architectures

Before we take a look at QNN model architectures, let us take a step back and understand where this
component fits into the overall quantum computing model (summarized in Figure 6). This diagram is
the same for all quantum computation of classical data. We begin by pre-processing the classical data
– this step might involve applying dimensionality reduction techniques such as principal component
analysis (PCA) to make more efficient use of limited qubits. Next, we use some encoding strategy
and state preparation subroutine to encode our classical data into quantum states. The next step is
where we apply the QNN model. Like all quantum circuits, this component consists of a set of unitary
(and therefore linear) operators. This may seem like a disadvantage of QNNs since the expressive
power of classical neural networks is largely due to the nonlinear activation functions. However,
the measurement operation itself can be a source of nonlinearity in the quantum model. Unlike
deterministic quantum circuits, variational circuits have parameterized gate operations which are

5



optimized in the training process. We will discuss the Quantum M-P Neural Network proposed by
Zhou and Ding, and a QNN model by Abbas et al. [13,2]

Figure 6: General overview of the quantum computing model

4.2.1 Quantum M-P Neural Network

The quantum M-P neural network is a quantum version of the traditional McCullough-Pitts model,
where the output of the k-th neuron can be written as Ok =

∑
j wkjϕj , j = 1, 2, ..., 2n and n is the

number of required qubits.[24] For example, a two qubit quantum M-P model has the four possible
inputs |00⟩ , |01⟩ , |10⟩ , |11⟩, and its output can be written asOk = w1ϕ00(a1, a2)+w2ϕ01(a1, a2)+
w3ϕ10(a1, a2) + w4ϕ11(a1, a2), where a1, a2 are the input qubits and wk = (wk1, wk2, ..., wkj)
represents a vector.

If the model has orthogonal states, such as |00⟩ and |01⟩, their inner product vanishes. Rewriting our
output equation in Dirac notation,[24,10]

Ok =
∑
j

wkj |a1, a2, ..., an⟩ , j = 1, 2, ..., 2n

i.e. Ok = wk1 |0, 0, ..., 0⟩+ wk2 |0, 0, ..., 1⟩+ ...wk2n |1, 1, ..., 1⟩

If the model has non-orthogonal states, such as α |0⟩ + β |1⟩ which is non-orthogonal with basis
state |0⟩ or |1⟩, then the output is given by Okm =

∑
j wkjϕj · ϕm, j = 1, 2, ..., 2n;m = 1, 2, ..., 2n,

where ϕj · ϕm is the inner product of the two states.

Zhou and Ding also discuss a weight updating algorithm which can be used to train the network. [24]

The weights of the network can be stored in a square matrix w. Then the relation of the input to the
output can be defined as |O⟩ = w |ϕ⟩.

Weight Learning Algorithm

(a) Initialize a weight matrix w0.
(b) Given a set of quantum examples (i.e. input-output pairs of (|ϕ⟩ , |O⟩)), calculate the output

using |γ⟩ = wc |ϕ⟩, where c is the number of iterations with initial value c = 0.

(c) Update weights with the formula wc+1
kj = wc

kj + τ(|O⟩k − |γ⟩k) |ϕ⟩j , where wkj are matrix
entries indexed by the row k and column j; τ is the learning rate.

(d) Repeat steps (b) and (c) until reaching acceptable errors.

6



The simple translation of the perceptron algorithm to the framework of quantum mechanics may
seem like a good approach and serves as a useful example for introducing QNN model architectures.
However, da Silva et al. have shown that the algorithm above does not follow unitary time evolution
and that the proposed neuron can be efficiently simulated by a classical single layer neural network.[7]

4.3 QNN (Abbas et al. 2021)[2]

In a model analyzed by Abbas et al. (shown in Figure 7), "the input x ∈ Rsin is encoded into an
S-qubit Hilbert space by applying the feature map |ψx⟩ := Ux |0⟩⊗S . This state is then evolved via
a variational form |gθ(x)⟩ := Gθ |ψx⟩, where G is a parameterized unitary evolving the state after
the feature map to a new state, and the parameters θ ∈ Θ are chosen to minimize a certain loss
function. Finally a measurement is performed whose outcome z = (z1, ..., zs) is post-processed
to extract the output of the model y := f(z)".[2] We use this network to this discuss the model
complexity, expressibility, and training times of quantum neural networks as compared to their
classical counterparts.

Figure 7: QNN model from Abbas et al.

4.4 Effective Dimension

The effective dimension is a model complexity measure inspired by information geometry and the
theory of minimum description length, which is a model selection principle that favors models with
the shortest description of the data. This idea is closely related to the Kolmogorov complexity of an
object, a generalized measure of complexity defined by the length of the shortest computer program
that produces the object as its output. According to Abbas et al., "the goal of the effective dimension
is to estimate the size that a model occupies in model space – the space of all possible functions for a
particular model class".[2]

A more commonly used model complexity metric is the Vapnik-Chervonenkis (VC) dimension. This
metric quantifies the complexity or expressive power of a model by considering the cardinality of the
largest set of points that the model can shatter, where a model is said to shatter a set of data points if
there exists a set of parameters such that the model makes no classification errors on the points for
every assignment of labels to points. The VC dimension is useful from a statistical theory perspective
because one can derive probabilistic error bounds on how well a model generalizes on unseen data.
However, it is difficult to compute in practice, because one must essentially show there exists a
set of D points that is shattered by the model, but any set of points greater than D is not shattered
by the model. Additionally, the VC dimension is criticized for requiring unrealistic assumptions
for generating error bounds, scaling with the number of parameters in the model, and ignoring the
distribution of the data. This means that generalization bounds for deep neural networks, which are
highly overparameterized, are often quantitatively vacuous.

In a later paper, Abbas et al. compare several model complexity (or capacity) measures and analyze the
following properties: existence of generalization bound, correlation generalization, scale invariance,
data dependence, training dependence, ability to handle finite data, and efficient evaluation.[1] They
argue that the effective dimension is a robust model complexity measure as it satisfies all of the
aforementioned desirable properties.

7



4.4.1 Capacity and Trainability of Quantum vs Classical Neural Networks

According to experiments by Abbas et al. (summarized in Figure 8), the QNN "consistently achieved
the highest effective dimension over all ranges of finite data".[2] The paper delves deeper into the
mathematics of Fisher information matrices, which are used to estimate the effective dimension, and
concludes that "QNNs can possess a desirable Fisher information spectrum that enables them to train
faster and express more functions than comparable classical and quantum models".[2]

The prospect of higher capacity models with potentially faster training times is very exciting, even
in the current NISQ (noisy intermediate-scale quantum) era, where leading quantum processors
contain about 50 to a few hundred qubits but are not yet fully fault-tolerant and scalable. Network
architectures that are qubit-efficient enable a reduction in the number of required coherent qubits,
which increases the practicality of QNNs even in the NISQ era. Beer et al. mention that the decrease
in number of qubits in their proposed model resulted in requiring multiple evaluations of the network
to estimate the gradient of the cost function. However, many NISQ architectures are able to rapidly
repeat executions of a quantum circuit. For example, the "Sycamore" quantum processor was able to
execute one instance of a quantum circuit a million times in 200 s. The limiting factor which poses a
real challenge is scaling the number of coherent qubits.[4]

Figure 8: Normalized effective dimension and training loss of models from Abbas et al.

4.5 Challenges of QNN

A significant challenge in training quantum neural networks is the barren plateau phenomenon. This
happens when the loss landscape or parameter space is extremely flat, resulting in a vanishing gradient
and making parameter optimization very difficult. As shown by Wang et al., barren plateaus can be
noise-induced, meaning the noise from the quantum hardware can cause the training landscape to
have a barren plateau.[20] Another source of barren plateaus is the circuit design itself, specifically
the random parameter initialization component. While there have been some proposed solutions for
avoiding circuit-induced barren plateaus, noise-induced barren plateaus are an area requiring further
research.[2] Interestingly, according to the experiments discussed above, the data encoding strategy
in a quantum neural network affects the likelihood of the model encountering a barren plateau –
encoding strategies that are easy to simulate classically are more likely to lead to barren plateaus,
while harder encoding strategies are more likely to avoid the phenomenon.[2]

8



5 Applications of QNN

Given that quantum computing and quantum machine learning are still in early stages of research,
applications of QNNs primarily focus on demonstrating feasibility rather than showing significant
improvements in accuracy compared to classical models. Even still, QNNs have been applied to a
wide range of problems, ranging from time series foresting of financial data to analyzing real-life data
from industrial machines.[12,14] In this section, we review applications of QNNs for breast cancer
prediction and biosignal processing. The practicality of applying a quantum model over a classical
model is discussed in the following section.

5.1 Breast Cancer Prediction

Ali et al. apply a QNN for early-stage breast cancer detection and compare its performance to a
classical convolutional neural network. The QNN was built using Google’s Cirq software framework
for simulating quantum circuits. Due to the limited number of qubits, the original 1080 by 1080
mammogram images were downsampled to 50 by 50 pixels for both the QNN and the classical CNN.
The networks were trained on a set of 1200 images with a validation set of 300 images.

Figure 9: Top – Ising quantum circuit for mammogram image-based cancer detection from Ali et al.;
Bottom – Compressed image representation before training.

Figure 10 demonstrates the result of training both networks on the 1200 image dataset. The QNN
converges much faster and achieves a higher accuracy on the validation set than the classical CNN.
However, it is more interesting that the QNN is able to achieve such performance from relatively
few training examples. Ali et al. initially performed the same experiment with a training set of 600
images, but the classical neural network seemed to underfit the data and was unable to converge in
its validation curve. The results of Ali et al. demonstrate that the prospect of larger scale quantum
computers "make QNNs an anticipated tool for performing mass medical imaging diagnostics with a
low false-negative rate".[3]

9



Figure 10: Classical CNN and QNN training accuracy.

5.2 Hybrid Quantum-Classical Model for Biosignal Processing

Akino and Wang propose a hybrid quantum-classical neural network model that integrates a varia-
tional quantum circuit (VQC) into a deep neural network (DNN) for electroencephalogram (EEG),
electromyogram (EMG), and electrocorticogram (ECoG) analysis.[11] The system takes amplitude-
encoded biological waveform arrays as input and predicts a task label on various physiological
datasets. The parameters of the QNN and DNN are jointly optimized by leveraging classical stochas-
tic gradient methods. As shown in Figure 11, the VQC component consists of Pauli-Y rotations and
staggered controlled Pauli-Z gates. Note that the Pauli-X gate behaves like a classical NOT gate,
resulting in a single bit flip. The Pauli-Z gate implements a phase flip operation by performing a
single-qubit rotation around the z axis by π radians. The Pauli-Y gate performs both a bit flip and
a phase flip by rotating around the y axis by π radians. The QNN component of the hybrid model
performs feature extraction while the classical component works as the post-processing layers. The
model was implemented using the PennyLane and PyTorch frameworks.

Figure 11: Top – Hybrid quantum-classical neural networks for biosignal processing;
Bottom – Variational QNN component.

Figure 12 summarizes the model performance of the classical and hybrid models – the hybrid quantum-
classical model outperformed the purely classical model on all seven physiological datasets.[11] This
paper provides another successful proof-of-concept for future applications of QNNs.

10



Figure 12: Classical and hybrid model test accuracy.

6 Quantum Advantage

Quantum neural networks, similar to their classical counterparts, are essentially universal function
approximators. Salinas et al. actually proved that the Universal Approximation Theorem holds for
QNNs as well.[15] Therefore, assuming the existence of an appropriate data encoding and availability
of sufficient qubits, QNNs can be used to solve any problems that classical neural networks can solve.
The more interesting question is what advantages, if any, do QNNs provide over classical neural
networks. As discussed in previous sections, there is some evidence that QNNs can both train to
lower losses faster and can have higher effective dimensions.[2] The idea of a quantum advantage is
still an active area of research, but assuming future improvements to quantum hardware, QNNs may
one day become another tool in the data scientist’s toolset.

The practicality of using a quantum model over a classical model will depend on the cost and avail-
ability of quantum computers, as well as the potential room for improvement that a quantum model
may provide. For example, although we may prove that quantum models are able to approximate
more functions and are therefore a more powerful class of models, is applying a QNN to a problem
where the leading classical model already achieves 98% accuracy practical? This cost-benefit analysis
is highly context-dependent. If we are examining a machine learning model for noise-cancellation
headphones, an incremental increase in effectiveness above 98% will probably not be very noticeable
and therefore not practical. However, if we consider models for early-stage medical diagnosis, even a
fractional percent of improvement can impact thousands of lives when deployed at scale. Another
example is model lift – consider a company like Meta conducting an ad campaign. Using similar
reasoning, a new model that improves the lift 2 even by less than a percent can have significant impact
on revenue for a company operating at Meta’s scale.

Although these cases may be of interest from a theoretical perspective, quantum models will need use
cases that are both cost efficient and clearly advantageous to achieve wider adoption in industry. In
a recent paper, Caro et al. proved impressive generalization bounds for QML – the generalization
error of a QML model with T trainable gates scales at worst

√
T/N , and improves to

√
K/N when

only K ≪ T gates have undergone substantial change in the optimization process.[6] This result
affirms our observations from the breast cancer prediction model, where the QNN model was able
to converge from a much smaller set of training data. According to Caro et al., "QML models can
outperform classical methods, assuming both achieve small training error, only in scenarios in which
QML models generalize well, but classical ML methods do not. We therefore consider our results
a guide in the search for quantum advantage of QML: We need to identify a task in which QML
models with few trainable gates achieve small training error, but classical models need substantially
higher model complexity to achieve the same goal. Then, our bounds guarantee that the QML model
performs well also on unseen data, but we expect the classical model to generalize poorly due to the
high model complexity".[6]

2Lift is a measure of the effectiveness of a predictive model calculated as the ratio between the results
obtained with and without the predictive model.

11



7 Future Directions

Future research directions in quantum machine learning and quantum computing as a whole can
be divided into near-term and long-term categories as they represent different challenges. In the
near-term NISQ era, we have noisy, small-scale quantum computers. The most important problem we
should solve is the input problem – specifically, we need to build a qRAM. As discussed previously,
many of the quantum algorithms that promise an exponential speed-up rely on qRAM, but currently
the idea of a quantum memory is purely theoretical. Furthermore, we should continue research
into finding more efficient (linear or logarithmic time) state preparation routines to ensure that the
quantum speed-up is not dominated by the inordinate cost of encoding classical data into quantum
states. Next, we should do more research into barren plateaus – particularly noise-induced barren
plateaus – and methods of avoiding them during parameter optimization.

Long-term problems in quantum computing pose more significant challenges – namely, scaling up
the number qubits while maintaining coherence. The more interacting quantum subsystems, the more
difficult it is for the system to stay resilient to noise and decoherence. Additionally, while small-scale
NISQ devices may not require quantum error correction, scalable quantum computers will need
further research into error correction to address the problems mentioned above. The current state-
of-the-art quantum processor, announced in November 2022, is IBM’s 433-qubit Osprey quantum
computer. IBM claims to be on track to announce the 1,121-qubit Condor and 1,386-qubit Flamingo
processors in 2023 and 2024, before it hits the 4,000-qubit stage with its Kookaburra processor in
2025.

8 Discussion

In this paper, we provided an introduction to the growing field of quantum machine learning and a
powerful class of variational models called quantum neural networks. The motivation for applying
quantum computing to machine learning problems comes from the fact that both quantum mechanics
and machine learning algorithms involve performing linear algebraic operations on high-dimensional
vectors. Given a qRAM, we will be able to achieve exponential compression in the representation
of classical data, leading to exponentially faster execution of the basic linear algebra subroutines.
Thus, in the long term, scalable quantum computers may be able to solve classically intractable
problems. While the results discussed in this paper are active areas of research and require further
research, current evidence suggests quantum models may be more expressive, consistently having
a higher effective dimension in experiments compared to their classical counterparts. Additionally,
we have evidence that quantum models may be able to learn from fewer training examples while
maintaining high generalizability as validated both experimentally and by theoretical upper bounds
on generalization error. This property of learning from fewer training examples may be useful in
cases where data collection is expensive or difficult, resulting in limited access to training data. In
addressing these challenges, we hope to build novel quantum computers and models capable of
solving problems that are currently considered computationally intractable, which will undoubtedly
have far-reaching impact across all disciplines.

References

[1] Abbas, A., Sutter, D., Figalli, A., & Woerner, S. (2021). Effective dimension of machine learning models.
https://doi.org/https://doi.org/10.48550/arXiv.2112.04807

[2] Abbas, A., Sutter, D., Zoufal, C., Lucchi, A., Figalli, A., & Woerner, S. (2021). The power of Quantum
Neural Networks. Nature Computational Science, 1(6), 403–409. https://doi.org/10.1038/s43588-021-00084-1

[3] Al Ali, M., Sahib, A., & Al Ali, M. (2022). Investigation of early-stage breast cancer detection using
Quantum Neural Network. https://doi.org/10.20944/preprints202210.0208.v1

[4] Beer, K., Bondarenko, D., Farrelly, T., Osborne, T. J., Salzmann, R., Scheiermann, D., & Wolf, R. (2020).
Training Deep Quantum Neural Networks. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-
14454-2

12



[5] Benedetti, M., Realpe-Gómez, J., Biswas, R., & Perdomo-Ortiz, A. (2017). Quantum-
assisted learning of hardware-embedded probabilistic graphical models. Physical Review X, 7(4).
https://doi.org/10.1103/physrevx.7.041052

[6] Caro, M. C., Huang, H.-Y., Cerezo, M., Sharma, K., Sornborger, A., Cincio, L., & Coles, P. J.
(2022). Generalization in quantum machine learning from few training data. Nature Communications, 13(1).
https://doi.org/10.1038/s41467-022-32550-3

[7] da Silva, A. J., de Oliveira, W. R., & Ludermir, T. B. (2014). Comments on “Quantum M-P neural network.”
International Journal of Theoretical Physics, 54(6), 1878–1881. https://doi.org/10.1007/s10773-014-2393-1

[8] Farhi, E., & Neven, H. (2020). Classification with quantum neural networks on near term processors.
https://doi.org/10.37686/qrl.v1i2.80

[9] Harrow, A. W., Hassidim, A., & Lloyd, S. (2009). Quantum algorithm for linear systems of equations.
Physical Review Letters, 103(15). https://doi.org/10.1103/physrevlett.103.150502

[10] Jeswal, S. K., & Chakraverty, S. (2018). Recent developments and applications in Quantum Neural Network:
A Review. Archives of Computational Methods in Engineering, 26(4), 793–807. https://doi.org/10.1007/s11831-
018-9269-0

[11] Koike-Akino, T., & Wang, Y. (2022). QuEEGNet: Quantum AI for Biosignal process-
ing. 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI).
https://doi.org/10.1109/bhi56158.2022.9926814

[12] Mangini, S., Marruzzo, A., Piantanida, M., Gerace, D., Bajoni, D., & Macchiavello, C. (2022). Quantum
neural network autoencoder and classifier applied to an industrial case study. Quantum Machine Intelligence,
4(2). https://doi.org/10.1007/s42484-022-00070-4

[13] McCulloch, W., & Pitts, W. (2021). A logical calculus of the ideas immanent in nervous activity (1943).
Ideas That Created the Future, 79–88. https://doi.org/10.7551/mitpress/12274.003.0011

[14] Paquet, E., & Soleymani, F. (2022). Quantumleap: Hybrid quantum neural network for financial predictions.
Expert Systems with Applications, 195, 116583. https://doi.org/10.1016/j.eswa.2022.116583

[15] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., & Latorre, J. I. (2020). Data re-uploading for a
universal quantum classifier. Quantum, 4, 226. https://doi.org/10.22331/q-2020-02-06-226

[16] Quantum embedding. Quantum embedding - PennyLane documentation. (n.d.). Retrieved December 8,
2022, from https://pennylane.ai/qml/glossary/quantum_embedding.html

[17] Schuld, M., & Petruccione, F. (2018). Supervised learning with Quantum Computers. Springer.

[18] Schuld, M., Bocharov, A., Svore, K. M., & Wiebe, N. (2020). Circuit-centric quantum classifiers. Physical
Review A, 101(3). https://doi.org/10.1103/physreva.101.032308

[19] Shah, F. (2021, December 18). Quantum Encoding: An overview. Quantum Zeitgeist. Retrieved December
8, 2022, from https://quantumzeitgeist.com/quantum-encoding-an-overview/

[20] Wang, S., Fontana, E., Cerezo, M., Sharma, K., Sone, A., Cincio, L., & Coles, P. J. (2021).
Noise-induced barren plateaus in variational quantum algorithms. Nature Communications, 12(1).
https://doi.org/10.1038/s41467-021-27045-6

[21] Weigold, M., Barzen, J., Leymann, F., & Salm, M. (2021). Expanding data encoding patterns for quan-
tum algorithms. 2021 IEEE 18th International Conference on Software Architecture Companion (ICSA-C).
https://doi.org/10.1109/icsa-c52384.2021.00025

[22] Weigold, M., Barzen, J., Leymann, F., & Salm, M. (2022). Data encoding patterns for quan-
tum computing. In Proceedings of the 27th Conference on Pattern Languages of Programs (PLoP ’20).
https://doi.org/10.5555/3511065.3511068

[23] Wootters, W. K., & Zurek, W. H. (1982). A single quantum cannot be cloned. Nature, 299(5886), 802–803.
https://doi.org/10.1038/299802a0

[24] Zhou, R., & Ding, Q. (2007). Quantum M-P Neural Network. International Journal of Theoretical Physics,
46(12), 3209–3215. https://doi.org/10.1007/s10773-007-9437-8

13


	Overview of Classical Machine Learning
	Introduction to Quantum Machine Learning
	Why is QML Interesting?
	Introduction to Quantum Neural Networks
	State Preparation and Input Encoding
	Basis Encoding
	Angle Encoding
	Amplitude Encoding
	qRAM Encoding

	QNN Model Architectures
	Quantum M-P Neural Network

	QNN (Abbas et al. 2021)[2]
	Effective Dimension
	Capacity and Trainability of Quantum vs Classical Neural Networks

	Challenges of QNN

	Applications of QNN
	Breast Cancer Prediction
	Hybrid Quantum-Classical Model for Biosignal Processing

	Quantum Advantage
	Future Directions
	Discussion

